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ABSTRACT: The site characterization objectives for a project are typically focused on determining the types of soil 
present, the engineering properties of these soils, and the stratigraphic structure of the subsurface. Often, there is a greater 
emphasis and more systematic evaluation of the soil properties, while the subsurface stratigraphic units, including their 
boundaries, vertical and lateral continuity, etc., are assessed in a more ad-hoc manner with greater reliance on engineering 
judgement.  The engineering judgement employed often assumes the subsurface to be more uniform that it actually is. 
This paper presents a framework using geostatistical methods to more quantitatively design and adapt site investigation 
programs to better estimate the subsurface geologic conditions while still evaluating soil types and engineering properties. 
This is exemplified first using an idealized synthetic 3D site and second through a 2D cross-section of a real project site. 
For the former, an idealized 3D site is used to evaluate the effect of sounding number and spatial distribution on calibration 
of a geostatistical model and the subsequent calibrated realization of subsurface conditions. Grid, nested, and combined 
grid-nested sampling patterns are used to calibrate and condition 3D transition probability geostatistical models of sub-
surface variability. The ability to identify spatial correlation from various number and patterns of exploration locations is 
presented and discussed. Analysis of a 2D cross-section at a real project site is then used to apply the observations made, 
delineating how assumptions in the geostatistical model and the number of CPT soundings can be used to refine a sub-
surface geologic model. This set of analyses lead to recommendation of a sounding spacing to correlation length ratio that 
is necessary to accurately quantify the spatial variability conditioned on discrete sampling locations.   

Keywords: Geostatistics; Spatial Variability; Site Investigation; CPT 
 

1. Introduction 

Site characterization is a multi-step process with the pri-
mary purpose of evaluating a project site for design and 
construction of a geosystem (e.g., building or bridge 
foundations, dam and levee construction, etc.). The pro-
cess consists of multiple stages, with the effort required 
for each dependent on project complexity. As detailed 
further by DeJong et al. (2016), the process typically con-
sists of hypothesizing the performance mechanisms and 
integrating them with a geologic model, performing pre-
liminary analyses to verify or eliminate possible scenar-
ios, performing site investigation using in situ and labor-
atory tools, distilling and idealizing the site conditions 
through re-evaluation of the hypothesized geologic 
model against the data collected followed by sub-division 
into representative zones to which properties are as-
signed, performing analysis and design, and finally per-
forming the observational method through construction 
and the project service life.  

Site investigation is the stage within the site character-
ization process where specific subsurface information is 
obtained for the project site. This stage typically consists 

of a planning phase, where information about the pro-
posed project extent and anticipated performance mech-
anisms are used to design a site investigation layout, ide-
ally consisting of multiple investigation tools. A 
combination of in-situ penetration tests (e.g., cone pene-
tration test, CPT, standard penetration test, SPT), non-de-
structive tests (e.g., shear wave velocity, SASW, etc.), 
and drilling and sampling, combined with subsequent la-
boratory testing, are used to evaluate subsurface condi-
tions and obtain engineering parameters for analysis and 
design.  

Information obtained from the site investigation is 
used to idealize site conditions by assessing the spatial 
variability in terms of measurement variability, property 
variability, and variability in the existence and location 
of individual soil types and layers (Phoon and Kulhawy 
1999). Site idealization for design often requires simpli-
fying assumptions for the subsurface properties and soil 
types. Due to budget constraints that tend to limit the ex-
tent of a site investigation, engineers must rely on meas-
urements from a small subset of the project site and ex-
trapolate observations to non-sampled locations for 
analysis and design. This latter step typically relies heav-



 

ily on engineering judgement, in part because the exe-
cuted site investigation is often more focused on obtain-
ing engineering properties and achieving site coverage. 
Engineering judgement is then heavily leveraged to gen-
erate a subsurface cross-section, which often portrays 
layers as being more uniform and continuous than reality 
due to the geotechnical engineer’s common propensity to 
overlook the complexity and discontinuity of typical dep-
ositional processes.  

The purpose of this paper is to investigate and demon-
strate how geostatistical concepts of spatial correlation 
and conditional realizations using transition probability 
geostatistics can provide more firm guidance in how site 
investigation programs can be performed to obtain infor-
mation useful for evaluating subsurface variability. To 
this end, background on the use of geostatistical methods 
applied in geotechnical engineering is presented, fol-
lowed by an overview of the transition probability geo-
statistical approach used in this study. A theoretical sam-
pling exercise of an idealized synthetically generated 3D 
site is used to provide insight into the accuracy and error 
produced when the number and spatial distribution of the 
CPT soundings is varied. Subsequently, a 2D cross-sec-
tion from a linear infrastructure project site along which 
a large number of CPT soundings was performed is stud-
ied. The effect of the number of CPT soundings as well 
as the incorporation of ‘soft information’ (e.g. geologic 
depositional process informed estimates) into the geosta-
tistical modeling is investigated. Finally, a workflow for 
considering integrated site characterization using adap-
tive sampling layout planning is presented.  

2. Background 

Consideration of spatial variability in geotechnical en-
gineering has historically focused on the selection of 
properties and parameters for engineering design (e.g., 
Phoon and Kulhawy 1999) or on the use of random field 
modeling for performing engineering analysis (Fenton 
and Vanmarcke 1990). These approaches for reliability 
based design provided early advances in the field, with a 
focus on capturing how properties and subsurface condi-
tions can vary and affect system performance. However, 
they have not fully captured the stratigraphic complexity 
inherent to the depositional processes, nor on how a ge-
otstatical model can be accurately conditioned to site 
data. As a result, the standard of practice largely assumes 
uniformity of site conditions (soil types, properties, lay-
ers, etc.) in absence of information definitively proving 
otherwise, which can be either a conservative or uncon-
servative assumption depending on project-specific load-
ing conditions and failure mechanisms.  

Methods to robustly analyze spatial variability have 
been proposed in the geotechnical literature. Developing 
spatially variable random field models for evaluating soil 
stratigraphy and continuity began largely with the work 
of Vanmarcke (1977). In addition, researchers have stud-
ied the variability of properties captured during site in-
vestigation (e.g., Phoon and Kulhawy 1999, Baecher and 
Christian 2005) and the ability to generate random fields 
for numerical simulations (e.g., Fenton and Vanmarcke 
1990, Griffiths et al. 2002, Jaksa et al. 2005, Boulanger 
and Montgomery 2016, Montgomery and Boulanger 

2017). The results presented in this prior research often 
separate the modelling of property variability within a 
single stratigraphic unit from modeling the presence of 
distinct stratigraphic units.  

Variability is often captured using spherical or expo-
nential covariance functions that model the correlation of 
properties in space or variogram functions that model the 
dissimilarity of properties in space (e.g., Elkateb et al 
2003). It is often represented in spatial models using a 
term to describe the extent of spatial correlation, such as 
range, correlation length, or scale of fluctuation (Elkateb 
et al. 2003).  

Approaches to capture correlation extent and calibrate 
spatial correlation models to measured field data depend 
on the types and quality of data and the sampling patterns 
used to obtain measurements for calibration. Borings and 
in-situ tests provide vertical profiles that capture subsur-
face information at varying frequencies. CPT testing has 
high vertical resolution for soil profiling, with data re-
ported every 2 to 10 cm. Sonic core samples provide con-
tinuous sampling beneficial for interpretation, although 
recovered samples are not suitable for obtaining soil 
properties due to significant disturbance during sam-
pling. More discrete sampling and testing methods (e.g., 
SPT, VST, PMT, DMT, tube sampling, etc.) do not have 
the resolution to finely resolve depositional stratigraphy 
but do provide measurements of engineering behavior. 
Information from borings or in-situ tests can assist inter-
pretation of laboratory tests, and vice versa. In addition, 
geophysical surveys can greatly assist in identifying 
stratigraphic features and providing information that in-
fills between widely spaced borings and soundings (Cot-
terill et al. 2017). Collectively, this information can be 
used to obtain measurements of engineering properties 
for analysis and design or be used to define depositional 
boundaries and contacts between units.  

The ability to evaluate correlation structure depends 
on the physical layout of the sampling plan. DeGroot and 
Baecher (1993) studied the ability of different sampling 
plans to capture spatial correlation structure. Using sam-
pling approaches of clustered, nested, stratified (or grid), 
and random sampling, they found that the nested ap-
proach provided the least biased estimate of the auto-
covariance distance. They also found that separation dis-
tances less than the estimated spatial correlation provide 
the best estimates of the autocovariance distance. This is 
reasonable since closely spaced data is most helpful in 
defining the initial decay slope of a correlation function 
or exponential variogram.  When the spatial correlation 
structure is known the best sampling plan is one with sys-
tematic distribution of sampling locations, as these pro-
vide even conditioning for the site (Olea 1984). However, 
the ability to capture spatial correlation structure with a 
given sampling plan also informs the design of the sam-
pling program, such that a balance between grid and 
nested approaches may be warranted (DeGroot and 
Baecher 1993).  

Generating simulations of subsurface stratigraphy us-
ing spatially correlated properties requires sampling, 
models for spatial correlation, and site interpolation. 
Models of spatial correlation can be applied to condi-
tioned or unconditioned random fields, where condition-
ing a correlation model on the measured data constrains 



the spatial correlation and honors data measured at sam-
pling locations (Lloret-Cabot et al. 2012). One such tech-
nique for conditioning random fields is kriging, which is 
a best linear unbiased estimator technique for interpola-
tion that honors conditioning data and is the cornerstone 
for geostatistical methods (Gooverts 1997). 

Geostatistical simulations increase in complexity with 
added spatial dimensions. 1-D implementation examples 
include modeling the spatial correlation of tip resistance 
and stratigraphic breaks from vertical CPTs (e.g., Fenton 
1999, Cao and Wang 2013, Li, X.Y. et al. 2015, Bong 
and Stuedlein 2017). 2-D applications include estimates 
of lateral spatial correlation (e.g., Lloret-Cabot et al. 
2012, 2014) and estimates of spatially varying foundation 
settlement (e.g., Griffiths et al. 2002, Al-Bittar and Sou-
bra 2014). 3-D applications have investigated the settle-
ment behavior of a spread footing foundation on spatially 
variable soil (Jaksa et al. 2005), estimated the depth to 
bedrock for deep foundations (Li, J. et al. 2015) and used 
neural network models to train and predict CPT tip re-
sistance in sands (Juang et al. 2001).  

In addition to information obtained via site investiga-
tion, the incorporation of ‘soft information’ is often nec-
essary and can aid in development of spatial correlation 
models. Examples of soft information include inferences 
about subsurface conditions from maps, reports, trench-
ing, etc. Consider, for example, a fluvial depositional en-
vironment (e.g. braided river, meandering river) where 
the number, extent, and continuity of layers is dependent 
on flow rate, sediment load, geometry, changes to river 
course, avulsion rates, subsidence rates, etc. (Nichols 
2009). While details of each of these contributing factors 
over depositional time may remain unknown, a deposi-
tional process hypothesis developed by a geologist could 
inform a site model that includes reasonable range esti-
mates for the number, extent, sequence, and connecitvity 
of layers across a site. This type of ‘soft information’ can 
be used to supplement ‘hard information’ (e.g. CPT 
sounding data) in geostatistical model development. Im-
portantly, this geologic model can also help consider the 
presence of other geologic layers, features, etc. that the 
‘hard information’ may not encouter or effectively re-
veal.  

The extent of considered subsurface variability de-
pends on the length scales relevant to the performance of 
the geosystem. As exemplified by Paull et al. (2020), the 
length scale of spatial variability is often proportional to 
the length scale of the failure mechanism. When the 
mechanism length scale is small relative to the strati-
graphic variability then the system performance will 
likely depend on the lower values within the weaker strat-
igraphic units. On the other hand, when the mechanism 
length scale is large compared to the stratigraphic varia-
bility the average values across all the stratigraphic units 
engaged in the failure mechnaism may be controlling. 
Exploring the relationship between the depositional envi-
ronment and spatial extent of the failure mechanism is 
necessary to understand the length scales of interest for 
geotechnical analysis and design as the depositional pro-
cesses influences depositional length scales. 

3. Transition Probability Approach to 
Modeling Spatial Correlation 

The transition probability approach to modeling spa-
tial correlation was developed in the field of groundwater 
hydrology for categorizing spatial continuity of flood 
plain deposits for contaminant transport (Carle 1996, 
Carle and Fogg 1996). This approach uses the probability 
of transitioning between categories to model spatial cor-
relation structure (Carle and Fogg 1996). A Markov 
chain transition probability model is used to model cross-
correlation relationships for geostatistical modeling, 
which assumes that spatial occurrences depend entirely 
on the nearest data.  

Calibration of the transition probability model re-
quires knowledge of the dataset sill, the background cat-
egory, mean length(s), and cross-correlation relation-
ships. The sill is the volumetric proportion of each 
category and is calibrated independently of model direc-
tion. The background category is typically assigned to 
what is expected to be the most prevalent category in the 
random field. For example, in floodplain depositional en-
vironments, overbank deposits may be set as the back-
ground category. Selecting a background category con-
strains the mathematical formulation of the Markov chain 
transition probability model. Defining a background cat-
egory means the number of user defined matrix entries 
increases by the square of the number of categories (let 
i=number of categories; # of entries = i2), such that the 
number of background entries increases (# background 
entries = 2i-1), and the number of matrix entries that must 
be calibrated increases (# of user calibrated entries = i2-
2i+1). In a two-category system, the transiogram is fully 
defined with one autocorrelation input (i.e., the mean 
length of the foreground category), while for a three-cat-
egory system four inputs are required (two autocorrela-
tion and two cross-correlation estimates), and so on. In a 
system consisting of three or more categories, additional 
insight into categorical transitions is required to deter-
mine the transition probability model. If enough data is 
available this information can be obtained by calibrating 
to the sampled data, otherwise these relationships must 
be inferred. 

Transition rates are selected after specifying the sill 
and background category. The autocorrelation transition 
rates are equal to the negative inverse of the mean length, 
such that either transition rates or mean lengths can be 
specified for the transition probability correlation model. 
Herein the term mean length is used to describe the spa-
tial correlation model, which is specified for each non-
background category. 

Transition probabilities are measured by sorting meas-
ured data into lag (or distance) bins, calculating the tran-
sition probability for each lag bin, and finally calibrating 
the transition probability models against these bins for 
subsequent geostatistical simulation. Lag bins can be set 
equal to the typical separation distance between observed 
data points, with the lag distance over which to calculate 
transition probabilities typically set to a value of half the 
data range in the given direction. 

Using the developed spatial correlation model, the 
subsurface is then idealized using the kriging technique 



 

described above. This technique minimizes error be-
tween the observed data and the objective function (i.e., 
the calibrated model) which is accomplished by deter-
mining the kriging weights necessary to minimize func-
tion error. As a result, kriging produces a singular reali-
zation that has the minimum error between observed data 
and interpreted data (Gooverts 1997).   

The specific transition probability approach applied 
herein was implemented in TPROGS (Carle 1999) using 
a categorical approach to geostatistical modeling, where 
categories can be assigned using CPT correlations (e.g., 
soil behavior type index, Ic, normalized penetration re-
sistance, qc1N, etc.), classifications from soil samples (e.g. 
sand, clay, SP, CH), or in terms of performance mecha-
nisms (e.g., expected liquefaction, permeability, etc.). 
Subjective development of category mean lengths is an-
other advantage of this approach, where direct measure-
ment of category extents from geologic samples or infer-
ences based on the depositional environment can be used 
as ‘soft information’ to augment observations from site 
investigation or the acquisition of sparse data. Ordering 
of facies (e.g., stratigraphic units) relationships used to 
describe depositional relationships is also captured using 
this categorical approach (Carle and Fogg 1996) and can 
be useful in cases with sequential depositional structure 
(e.g., fining upward sequence).  

3.1. Data Gathering and Reduction 

Data gathering and reduction occurs by first gathering 
site data (e.g., site investigation) followed by identifying 
of zones of interest (e.g., geologic units) to reduce data 
and establish a stationary dataset. Random field proper-
ties of the zoned and categorized data (e.g., mean, vari-
ance) are evaluated to assess ergodicity and stationarity. 
Verifying stationarity assumptions of constant mean and 
variance in space are necessary to rigorously assess the 
applicability of spatial correlation models for estimating 
the properties of the given random field (e.g., identifying 
geologic boundaries that may be present at the project 
site).  

Cumulative distributions can be useful in initial as-
sessment of soil variability. The mean and standard devi-
ation of each individual profile are easily distinguished 
from these distributions by considering the 50th percentile 
and the shape of the curve. Compilation of cumulative 
distributions from all CPT profiles from a project site or 
zone are useful in identifying the distribution of proper-
ties across the site and can be useful for selecting repre-
sentative properties for analysis (e.g., DeJong et al. 2016, 
Boulanger and Montgomery 2016, Montgomery and 
Boulanger 2017).  

3.2. Development of a Transition Probability 
Model 

Transition probabilities are measured by aggregating 
categorical observations to lag bins for each spatial, or-
thogonal direction. Calibration of the spatial correlation 
model is performed in two stages: (1) determining the sill 
of the random field and (2) determining the transition 
rates for each component of the transition probability ma-
trix.  

The sill is determined from the global proportion of a 
given category or calibrated from observations in a single 
direction. Despite how the sill is selected, the sill is a 
property of the dataset and maintains the same value for 
each direction. Herein the sill is selected as the average 
number occurrences for each category and is most easily 
determined with category observations in the elevation 
(vertical) direction. 

For two and three category systems, the transition 
rates are (1) qualitatively calibrated using visual fitting of 
observed transition probabilities vs. lag bin data, (2) 
quantitatively calibrated using a best fit least squares re-
gression of observed transition probabilities, or (3) spec-
ified using inferred mean lengths (i.e., soft information). 
Sensitivity analysis with a range of transition probability 
calibrations are useful for evaluating the robustness for 
certain project sites.   

3.3. Geostatistical Simulation 

Geostatistical simulation using transition probability 
models in TPROGS consists of an objective function 
(e.g. the transition probability model), an algorithm to 
minimize the error of the objective function, and a 
quenching-based algorithm to further reduce error in the 
objective function. In TPROGS, the sequential indicator 
simulation (SIS) and simulated quenching algorithms are 
used in tandem to reduce simulation error.  

Sequential indicator simulation (SIS) incorporated in 
TPROGS uses an indicator kriging approach to develop 
geostatistical simulations of spatial variability (Carle 
1999). In its implementation each grid node is treated in-
crementally to determine the category value. Once de-
fined, the node is set and serves as an additional condi-
tioning location for undefined nodes. In this method, the 
first node is specified, and the simulation results in 
unique randomly generated realizations. This allows for 
Monte Carlo analysis of the subsurface using unique sub-
surface realizations that have the same spatial properties.  

Simulated annealing (or quenching) iteratively im-
proves the simulation by eliminating ‘impurities’ that 
disrupt the objective function. This procedure cycles 
through each grid node and evaluates whether a change 
in the node category will reduce the objective function. 
The process continues until the objective function is min-
imized below a specified threshold or the maximum num-
ber of iterations are reached.  

Successful implementation of SIS and simulated an-
nealing results in a statistically robust simulation that 
honors conditioning data and the geostatistical model. 
Uncertainty in simulation realizations can be quantified 
using both internal and external validation methods. 
TPROGS contains an internal check in the quenching al-
gorithm based on a user set conversion tolerance.  

4. Case I: Analysis of Simulated 3D Site  

A simulated site investigation was performed with an 
idealized, synthetically generated 3D subsurface using 
the transition probability technique described above. This 
example provides insight into the ability of transition 
probability geostatistics to capture spatial correlation 
structure and produce realistic simulations using a range 



of sampling patterns and model calibrations. The ideal-
ized synthetic subsurface was developed as an analog for 
an alluvial depositional environment, defined such that 
categories at each X, Y, and Z location were fully known. 
The idealized subsurface was then ‘investigated’ with 
CPTs to obtain profiles of the subsurface conditions, 
which were then used to develop spatial correlation mod-
els and produce conditional simulations using the transi-
tion probability approach. Three site investigation pat-
terns were considered; equally spaced grid sampling, 
nested sampling, and a combined nested-grid sampling 
approach.  

Using a fully known idealized subsurface allows for 
determination of what constitutes a sufficiently rigorous 
site investigation, which is not practically possible in nat-
ural alluvial soil deposits. Since the synthetic subsurface 
is fully defined, uncertainty is restricted to only model 
and simulation uncertainty. This section is organized by 
first presenting the idealized site, then presenting the sim-
ulated sampling methodology, followed by the results 
and discussion of the simulated investigations.  

4.1. Idealized Site 

An idealized site was generated to represent a simpli-
fied alluvial depositional environment comprised of 
channel and  overbank soil layers or more simply, ‘sand-
like’ and ‘clay-like’ soils. This simulation represents a 
defined ‘reality’ that was used to quantify uncertainty de-
rived from simulations conditioned on a sampled subset 
of the ‘reality’. The site was developed using TPROGS 
and modeled with specified correlation lengths in each 
direction without conditioning constraint. The volumet-
ric proportion of channel deposits is defined as 30% (e.g., 
the sill) and mean lengths of 90, 30, and 3 m were speci-
fied for the downstream (X), cross-channel (Y), and ele-
vation (Z) directions, respectively. The extent of the sim-
ulated site dimensions are 540, 180, and 18 m in the X, 
Y, and Z directions, respectively, representing a domain 

that is six times the respective mean length in each direc-
tion. The idealized site shown in Figure 1 is the realiza-
tion of the simulation calibrated to these parameters and 
dimensions that was defined as ‘reality’.  

4.2. Sampling Methodology 

Simulated CPT investigation programs of the ideal-
ized subsurface were designed and performed in a man-
ner consistent with typical site investigation programs. 
Idealized sampling was performed using between 9 to 
2,025 synthetic CPTs that penetrated the full depth of the 
idealized site and reported the measured categories at 
each intersected simulation node. Three investigation 
patterns were considered for synthetic site investigation: 
even grid sampling, nested sampling, and a combined 
nested-grid approach (e.g. Figure 2). For each simulated 
CPT the extracted categories were considered as meas-
ured site information. An example sampling summary is 
shown for a 36 CPT grid pattern in Figure 3. Note that 
the large number of simulated CPTs used in some of the 
investigation patterns is not a practical suggestion but is 
instead used to capture and demonstrate the modeled spa-
tial structure of a densely sampled subsurface. 

Grid sampling locations were evenly subdivided in 
each direction based on the number of simulated CPTs 
selected for each direction (e.g., Figure 2a, Figure 2c). 
The minimum spacing between soundings was equal to 
approximately 1/8th of the mean length for the given di-
rection and the maximum spacing between soundings 
was twice the mean length for the given direction. The 
spacing for each direction was determined by:  

𝜃! =
"!"#
#$

(𝑖 − 0.5)	𝑓𝑜𝑟	𝑖 = 1:𝑁"	        (1) 

where θ represents each orthogonal direction (either X or 
Y), θmax represents the maximum dimension of the simu-
lation domain of the given direction, and Nθ represents 
the number of investigation locations in the given direc-
tion. The spacing locations were rounded to the nearest 

Figure 1. Idealized simulation used as an analog for a simplified alluvial depositional environment. Correlation 
lengths of 90, 30, and 3 m in the downstream, cross-channel, and elevation directions, respectively. 



 

grid node integer (e.g., divisible by a value of 2 in the Y 
direction and 4 in the X direction). Grid sampling used a 
total of 9, 36, 121, 484, and 2025 CPTs.   

Nested sampling locations were selected to provide a 
variety of sampling spacings, from as small as 1/16th to 2 
times the mean length for the given direction. Nested 
sampling was performed with the same number of CPTs 
in each direction with up to 12 soundings located along a 
given sampling transect. The location of the nested pat-
tern occupies the middle third of the project site in both 
horizontal directions, resulting in a grouping of CPTs in 
the middle of the project site (e.g., Figure 2b). Nested 
patterns use a total of 9, 36, and 144 CPTs.  

The combined nested-grid approach takes each nested 
pattern and repeats it across the remainder of the site, re-
sulting in nine combined nested sampling subsets (e.g., 
Figure 2e). The combined approach resulted in a total of 
81, 324, and 1296 CPTs.  

Transition probability models were determined by ei-
ther calibrating the spatial correlation model to simulated 
sampled observations (CPT sounding data) using a best 
fit approach (as shown in Figure 4) or by using geologic 
inferences (i.e., ‘soft information’) of spatial correlation 
lengths for each orthogonal direction. For this example, 
the geologically “inferred” spatial correlation lengths 
were set equal to the specified mean length of the ideal-
ized subsurface in each direction (i.e., “perfect” soft in-
formation). The sill was determined from the category 
proportions of the synthetically sampled observations. 
Uncertainty in transition probability model calibration 
was quantified in terms of true calibration error, which is 
defined as the percent difference between the calibrated 
model and the actual mean lengths used to simulate the 
idealized site.  

The calibrated model from the given spatial sampling 
pattern was used to generate simulations conditioned on 
the sampled data to estimate the site’s spatial structure. 

Figure 2. Some of the sampling patterns used in the idealized sampling example: (a) grid sampling with 36 CPTs, 
(b) nested sampling with 36 CPTs, (c) grid sampling with 121 CPTs, (d) nested sampling with 144 CPTs, and (e) 
combined nested grid with 81 CPTs.. Note that the combined nested grid pattern in (e) is a 9 CPT nested pattern 
replicated 9 times. Other combined nested grid patterns follow this same approach, though the number of CPTs used 
in the original nest varies. 

Figure 3. Example shown for 36 CPT site investigation in a grid pattern where (a) shows the sampling locations of the 
idealized reality superimposed on the idealized subsurface and (b) summarizes the resulting simulated sampling investi-
gation to be used in assessing spatial structure and simulation error. 
 



Results from one realization of each simulation per-
formed in TPROGS using the same grid dimensions as 
the idealized site were used to determine simulation er-
ror. Simulation error was defined as the difference be-
tween simulation realizations and the idealized site and 
was determined by identifying the locations of channel 
deposits in the idealized reality and comparing against 
simulated categories for the corresponding grid locations 
from the simulated realization. The error is calculated as:  

𝑆𝑖𝑚. 𝐸𝑟𝑟𝑜𝑟	(%) = $
#
∑ ∑ ∑ 6𝑉𝑎𝑙%,',( −('%

𝑉𝑎𝑙%,',(,)*+,-: 	∈ 𝑉𝑎𝑙%,',(	)*+,- = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙  (2) 

where N is the total number of simulation grid nodes and 
X, Y, and Z are the grid nodes belonging to each direc-
tion. For idealized simulation grid nodes that are channel 
deposits (e.g., ValX,Y,Z,Ideal = 1), ValX,Y,Z is the value of 

the sampling simulation for the corresponding grid 
nodes. Grid nodes that indicate the same value (i.e., a 
value of 1) do not contribute to the simulation error. In-
creased similarity between the idealized reality and the 
given simulation results in reductions in the measured 
simulation error. Simulation error is affected by errors in 
the estimated sill, correlation length for each direction, 
and limited conditioning locations.  

4.3. Results and Discussion 

Three sampling patterns consisting of between 9 and 
2025 simulated CPTs were used to characterize an ideal-
ized site for the purpose of evaluating the sampling pat-
tern’s ability to capture spatial structure and model sub-
surface stratigraphy. Results are presented in Figure 5 
that compare isometric views of the idealized geometry 

Figure 4. Summary of transition probability measurements and calibrations for 36 CPTs where (a) is the vertical transi-
ogram, (b) is the downstream transiogram, and (c) is the cross-channel transiogram. Note both grid and nested patterns 
are represented herein. 

Figure 5. Simulation realizations for different sampling patterns using 36 CPTs. The left column shows the base subsur-
face stratigraphy with the proposed sampling pattern displayed. The middle column shows the conditional simulation 
when mean lengths are calibrated to observed data. The right column shows the conditional simulation when mean 
lengths are inferred from site knowledge. The top row is a grid sampling approach while the bottom row is a nested 
sampling pattern, both with 36 total CPTs.  
 



 

and resulting subsurface realizations interpreted from 
simulations based on grid and nested simulations with 36 
CPTs. The subsurface realizations were based on either 
calibrated or inferred correlation lengths, and are condi-
tioned on the CPT locations for each sampling pattern. 
Figure 6 presents similar results as Figure 5 but with a 
larger number of CPTs (>324).  

The sill estimated from each simulation pattern and 
number of CPTs is shown in Figure 7. Results indicate 
that the sampled sill approaches the global defined sill as 
the number of CPTs increases. The grid pattern provides 
reasonable estimates of the sill for the range of CPTs 
used, while the nested pattern is less effective site the site 
is not fully covered. 

The calibrated transition probability mean lengths of 
channel fill deposits in the vertical, cross-channel, and 
downstream directions are shown in Figure 8. It is noted 
that the inferred data shown must, by definition, produce 

the correct value since it was defined as such, and is 
therefore included for context. For simulations in which 
the mean length is calibrated to measured transition prob-
abilities, the nested approach typically underestimates 
mean lengths while the grid approach overestimates 
mean lengths when fewer CPTs are used. When investi-
gations included more CPTs the various sampling ap-
proaches converge to the defined mean length in all three 
orthogonal directions.  

The error in estimating the transition probability mean 
lengths of channel fill deposits in the vertical, cross-chan-
nel, and downstream directions is shown in Figure 9. For 
simulations in which the mean length is calibrated to 
measured transition probabilities, the nested approach re-
sults in smaller error when fewer CPTs were used. When 
more CPTs were used the three sampling approaches re-
sult in smaller mean length calibration error. The spacing 
to mean length ratio (S/L) reported in Figure 9 indicates 

Figure 6. Simulation realizations for different sampling patterns using a large number of CPTs. The left column shows 
the base subsurface stratigraphy with the proposed sampling pattern displayed. The middle column shows the conditional 
simulation when mean lengths are calibrated to observed data. The right column shows the conditional simulation when 
mean lengths are inferred from site knowledge. The top row is a grid sampling approach with 484 CPTs while the bottom 
row is a combined nested grid sampling pattern with 324 CPTs. 

Figure 7. Estimates of global sill obtained from site investigation patterns.  



decreasing calibration error with decreasing S/L for grid 
sampling patterns in the horizontal directions (e.g., Fig-
ures 9d, 9f).  

Simulation error decreases with an increasing number 
of CPTs for all sampling patterns and calibration meth-
ods. Measured simulation error is shown in Figure 10 for 
all sampling patterns with both calibrated and inferred 
mean lengths. For grid sampling patterns with a small 
number of CPTs the inferred simulations result in larger 
simulation error than the calibrated approach. This is due 
to the observations evident in Figures 8 and 9 where the 

calibrated mean lengths are much greater than actual 
mean lengths for cases with fewer CPTs. The increase in 
calibrated mean length implies continuity, therefore re-
moving more isolated pockets of channel deposits. The 
simulation error is largest for nested patterns with cali-
brated mean lengths, even with inclusion of additional 
CPTs. Differences between simulation error for cali-
brated and inferred mean lengths tend to decrease with 
increasing number of CPTs. Simulation error as a func-
tion of S/L plotted in Figure 10 shows a decrease in sim-
ulation error with decreasing S/L.  

Figure 8. Calibrated transitiion probability mean lengths for each direction as a function of the number of sampling 
locations and the spacing to mean length value, S/L for the three sampling patterns investigated: grid, nested, and 
combined nested grid. 



 

These results indicate that the global sill is best esti-
mated using the grid approach, where greater site cover-
age occurs with a small number of CPTs. The nested ap-
proach has a smaller spacing to mean length ratio and is 
less distributed for a similar number of CPTs, resulting 
in localized error for sill estimation. The combined 
nested grid produces stable sill estimates, in part due to 
the balance between approaches and the relatively large 
number of CPTs used in the smallest combined pattern 
(e.g., 81 CPTs). 

The ability to accurately capture mean length depends 
more on S/L than on the total number of CPTs used, as 
evident in the comparison between grid and nested pat-
terns with 9 or 36 CPTs in Figure 9. The transition prob-
ability framework uses an exponential autocorrelation 
model, where the mean length represents the initial decay 
of the exponential model. If the value of S/L is large, the 
initial decay of the exponential function and the mean 
length is difficult to determine and typically overesti-
mated with calibration errors greater than 100% for cer-
tain sampling patterns and S/L values greater than 0.5.  

Figure 9. Error in estimating transitiion probability mean lengths for each direction as a function of the number of 
sampling locations and the spacing to mean length value, S/L. 



Accurate estimates of mean length are observed for 
decreasing value of S/L in both X and Y directions for 
each sampling pattern. Since the CPT spacing in Z is 
fixed by the vertical sampling frequency, the error and 
value of S/L is small for both sampling patterns explored 
and depends mostly on the aggregated length of vertical 
penetration for all considered CPTs.   

For simulations where mean lengths were calibrated 
to sampled data and few CPTs are used, the nested sam-
pling patterns typically underestimated mean lengths 
while grid patterns typically overestimated mean lengths. 
As the number of grid pattern CPTs increases, the spac-
ing decreases, resulting in more lag bins, smaller mean 
lengths, and reduced S/L values. Because the spacing be-
tween CPTs is variable in the nested pattern, additional 
nested CPTs do not add additional lag bins but instead 
add more data points to the considered lag bins and refin-
ing the measured transition probabilities, thereby im-
proving the mean length estimate. As the number of 
CPTs increases, the simulation error of the calibrated 
sampling patterns converge.  

Visual comparison between the idealized subsurface 
and resulting simulations developed using simulated CPT 
site investigation indicate that, for a small number of 
CPTs, simulations are highly variable and are not well 
constrained. As expected, visual evaluation of the more 
thoroughly sampled site in Figure 6 indicates greater con-
sistency between the idealized subsurface and the result-
ing simulation.  

The simulation error for the sampling patterns, cali-
bration types, and number of sounding locations used as 
a function of either number of CPTs or the value of S/L 
for each calibration direction shown in Figure 10 reveal 
interdependencies.  Differences in simulation error for 
calibrated versus inferred grid sampling patterns range 
between 3 to 20% and depend primarily on the number 
of CPTs used in the simulations. Overprediction of cor-
relation length (e.g., assuming greater continuity) may re-
sult in global reductions in error, however localized error 
may increase. For large length scales of interest, the re-
sult may be acceptable, however for smaller length scales 
of interest, the lack of adequate conditioning on the 
smaller length scale may result in conservative or uncon-
servative predictions of performance.  

Nested sampling patterns result in the largest simula-
tion error for calibrated conditional simulations which is 
attributed to the lack of conditioning data across the site 
(Figure 10). While mean length estimates slightly under-
predict the actual values, the nested sampling pattern 
only covers at most 11% of the project site, resulting in a 
poor distribution of conditioning data. Performing nested 
explorations with increased density of conditioning loca-
tions within a given location further constrains the simu-
lations near conditioning locations, but the regions with-
out conditioning locations remain unconstrained with 
greater simulation error in these areas.  

For grid and combined nested-grid approaches, widely 
spaced sampling locations do not constrain simulations 
when sampling spacing is large relative to mean length 
estimates (e.g., larger value of S/L). In the case of a 36 
CPT grid pattern, the estimated cross-channel mean 
length is 60 m versus the actual value of 30 m. Given the 
cross-channel spacing between CPTs of 30 m, the S/L is 
0.5 and 1.0 for the estimated calibration and actual value 
spatial correlation, respectively. The S/L artificially de-
fines a smaller value, due to the overestimation of mean 
length in the calibration.  Overestimation of mean length 
results in more simulation continuity and the artificially 
smaller S/L value increases the influence of conditioning 
locations during simulation.  

Improvements to spatial correlation estimates have lit-
tle effect in reducing simulation error in regions where 
the simulation is unconstrained (i.e., large values of S/L). 
The uncertainty in site simulations with larger values of 
S/L requires a combination of more accurate spatial cor-
relation models and closely spaced conditioning loca-
tions to reduce simulation uncertainty. Site investigation 
layouts that provide this balance will improve estima-
tions of subsurface stratigraphy. 

For this idealized simulation, nested patterns appear to 
better capture spatial correlation structure with fewer in-
vestigation locations due to the increased variety of lag 
spacing, while grid sampling patterns are better at an-
choring the conditional simulations due to the more dis-
tributed CPT pattern. The use of the combined nested-
grid approach is an attempt to balance correlation calibra-
tion with added conditioning constraint. Grid patterns re-
sult in lower simulation error when the spatial structure 

Figure 10. Simulation error for the idealized subsurface as a function of number of sampling locations and the spacing 
to mean length ratio, S/L. Note that the simulation error is the aggregated errors in the X, Y, and Z directions.  

 



 

is known or when sufficient site investigation is per-
formed such that S/L is small. Ideally, additional sam-
pling locations would increase the presence and distribu-
tion of conditioning data, which would reduce simulation 
uncertainty and limit the impact of a poorly defined spa-
tial correlation structure. The ratio of sampling separation 
distance to the calibrated mean length (i.e., S/L) is an in-
dicator of site spatial variability in a given direction. An 
inferred spatial correlation structure from knowledge of 
the geologic depositional environment reduces simula-
tion uncertainty by improving assessment of the spatial 
correlation structure. These simulations show the need to 
balance site coverage (i.e., number and location of con-
ditioning data) and assessment of spatial correlation 
structure (i.e., the measured or inferred correlation 
lengths). Simulations with a balanced approach result in 
reduced simulation uncertainty.  

5. Case II: Analysis of Project Site 2D Cross-
Section 

An industry project case history where 31 CPT sound-
ings were performed along the axis of a proposed earthen 
embankment dam provided the opportunity to use the 
conclusions drawn from the above idealized synthetically 
generated scenario and to apply it to an industry project. 
The site, located east of the Sierra Nevada mountain 
range in California, consists of an incised fluvial channel 
bounded by late Pleistocene and early Holocene fan de-
posits to the west, and early to mid-Holocene fan deposits 
to the east. A substantial site exploration program con-
sisting of geotechnical borings, sonic borings, CPTs, 
SPTs, iBPT soundings, and trenching investigations was 
performed to investigate the subsurface stratigraphy and 
evaluate liquefaction susceptibility of these soils.  

Geostatistical simulations of subsurface variability 
were performed using the methods presented above. The 
selection of the decision variable, calibrations of the spa-
tial correlation model, and resulting conditional simula-
tions are presented. Sensitivity of the correlation model 
calibration and conditional simulation to the number and 
location of CPT soundings used is also investigated and 
discussed. Additionally, sensitivity to correlation length 
calibrations is considered using correlation lengths equal 
to 0.5 to 2.0 times the calibrated value.  

5.1. Site Investigation 

The project owner commissioned several exploratory 
studies beginning in 2002 to compile a large dataset of 
subsurface explorations consisting of borings, in-situ 
tests, and geologic studies. Many CPTs were performed 
at the project site over multiple investigation campaigns, 
with a total of 31 unique CPTs performed along the pro-
posed dam alignment, resulting in an average horizontal 
CPT sampling spacing of 16.1 m. Along the proposed 
dam axis, the closest CPTs were spaced 7.9 m apart and 
the furthest spaced CPTs were 21.9 m.  

Geologic units of lower channel infill and upper chan-
nel infill deposits were delineated in the site investiga-
tion. The incised channel deposits are bounded by Pleis-
tocene alluvial fan deposits to the east and west, with 
Holocene channel infill deposits overlying Pleistocene 

alluvial channel infill deposits. Characterization of the 
upper alluvium, denoted as Zone 1 alluvium, was exam-
ined in this study.  

5.2. Geostatistical Simulations 

Geostatistical simulations were developed for the 
Zone 1 alluvium at the project site using the 31 CPT 
soundings obtained along the proposed dam alignment.  

5.2.1. Decision Variable Specification  

The overburden corrected, normalized penetration re-
sistance (qc1N) was selected as the decision variable for 
the geostatistical simulations. qc1N is a unit independent, 
stress normalized measurement that removes non-sta-
tionary trends from the data, such that variations in meas-
ured qc1N primarily reflect the variation in soil type, den-
sity, and strength. The use of the soil behavior type index, 
Ic, to delineate CPT measurements into bins of ‘sand-
like’ and ‘clay-like’ behavior is not an effective decision 
variable in this analysis since the Zone 1 deposits are 
98% “sand-like” using the Ic threshold of 2.6. Addition-
ally, given adequate seismic hazard, this suggests the soil 
is capable of earthquake-induced excess pore pressure 
generation and cyclic liquefaction.  

The threshold for qc1N was selected based on the po-
tential for liquefaction. A design earthquake with a mo-
ment magnitude of 7.75 and 84th percentile peak ground 
acceleration (PGA) of 0.85g results in cyclic stress ratios 
(CSR) of approximately 0.4 to 0.6 in the Zone 1 alluvium. 
A simplified two-category threshold qc1N of 170 was se-
lected to delineate liquefiable and non-liquefiable depos-
its, where the liquefiable materials exceed the 15% prob-
ability of liquefaction threshold indicated by the 
Boulanger and Idriss (2015) empirical CPT triggering 
curves.  

The CPT traces are summarized in Figure 11 in terms 
of elevation, cumulative percentile, mean and standard 
deviation. Approximately 50% of the CPT traces in Zone 
1 indicate expected liquefaction (e.g., qc1N < 170), how-
ever the patterns of these CPT traces is less easily dis-
cernable (Figure 11c).  

5.2.2. Model Calibration 

Transition probabilities were calculated in TPROGS 
and fit with Markov chain transition probability models. 
A two-category simulation with a background category 
of non-liquefiable (NL) (e.g., qc1N > 170) and a fore-
ground cateory of liquefiable (L) (e.g., qc1N < 170) was 
selected for the series of simulations, with model calibra-
tion sill and mean lengths determined based on the data 
obtained from all 31 CPTs. The calibration shown in Fig-
ure 12 results in an expected liquefaction categorical sill 
of 49% and mean lengths of 1.05 and 61 m were deter-
mined via regression for the vertical and horizontal direc-
tions, respectively. This resulted in a horizontal to verti-
cal correlation length anisotropy (Lx/Lv) of 58 and a 
horizontal spacing to mean length ratio (Sx/Lx) of 0.27.  



5.3. Results and Discussion 

Simulation realizations were performed as described 
above using available conditioning data for simulation. A 
single conditional realization for the 31 CPT simulation 
for the project site is shown in Figure 13. The realization 
indicates continuity of liquefiable material at the upper 
east of the site and an approximately 1.5 m thick contin-
uous liquefiable lens extending 305 m across the western 
to central region of the site at elevation 1135 m. This par-
ticular layer may be a sheet flow deposit from the slope 
west of the site. The remainder of the deposition is allu-
vial channel deposits.  

Multiple realizations of the same calibrated model and 
conditional simulation provide insight into the sensitivity 

of the simulations to considered modeling parameters. 
Figure 14 shows a heat map of the average grid node cat-
egory for 10 realizations generated from the same simu-
lation parameters. Bold colors (i.e., black or cream) indi-
cate that the category across the realizations was 
consistently produced in the different simulations. The 
transitional gray colors indicate the relative frequency 
that either category 1 or category 2 values were produced 
at the given grid node, with a lighter gray indicating that 
category 1 was produced more frequently and a darker 
gray indicating that category 2 was produced more fre-
quently. These gray regions indicate regions where the 
calibrated model is unconstrained such that the category 
value depends primarily on the sill (i.e., 49% in this case).  

Simulation sensitivity to calibrated horizontal mean 
length for the 31 CPT cross-section is evaluated using 

Figure 11. Summary of normalized corrected tip resistance for the 31 CPTs performed along the proposed dam allignment. 
A qc1N value of 170 is chosen as the categorical cutoff between expected liquefaction and non-liquefaction based on 
triggering correlations from Boulanger and Idriss (2015). 

Figure 12. Transition probability calibrations using 31 CPTs for (a) vertical and (b) horizontal (cross-channel) 
measurements. The dashed red line represnets the mean length calibration for the category of interest. 



 

horizontal mean lengths of 30.5, 61.0 and 122 m, repre-
senting values of 0.5, 1.0 and 2.0 times the determined 
horizontal correlation length. Figure 15 shows the result-
ing average of 10 conditional simulations for these vari-
ations (while the vertical mean length was held constant 
at 1.05 m). The average simulation error does not vary 
significantly between the simulations, with the values be-
ing 18.5, 12.8, and 14.8% for simulations with horizontal 
mean lengths of 30.5, 61.0 and 122 m, respectively.  

Calibration sensitivity is influenced by the number of 
CPTs performed as varying the number and selection of 
considered CPTs affects the sampled sill, calibrated mean 
lengths, quantity and location of conditioning data, and 
separation distance between conditioning locations. The 
number of CPTs used in each sensitivity simulation were 
3, 5, 9, 16, and 31. In addition, the CPTs were selected to 
maintain a similar spacing between sounding locations 
that were distributed across the site.  

The additional calibrations for increasing the number 
of CPTs used in site investigation is shown in Figure 16, 
which indicates the category 1 measured transition prob-
abilities in the horizontal cross-channel direction and the 
calibrated correlation lengths calibrated to each limited 
data set. Widely distributed CPTs produce large lag dis-
tances and correspondingly large horizontal mean 
lengths. With increased number of CPTs, the separation 

distance between CPTs decreases and the resulting cali-
brated mean lengths correspondingly decrease.  

The average of 10 conditional simulations using the 
sill and correlation lengths individually calibrated to 3, 5, 
9, 16, and 31 CPTs are shown in Figure 17. As expected, 
each increase in CPTs improves definition of the esti-
mated subsurface structure. The calibrations and condi-
tional simulations presented in Figures 16 and 17 show 
dependency of modeled subsurface conditions on both 
correlation length calibrations and conditioning loca-
tions.  

The full CPT data set results in a well-defined vertical 
mean length of 1.05 m and a horizontal mean length of 
61.0 m, respectively. The sensitivity of geostatistical sim-
ulations to the number and location of conditioning CPTs 
is illustrated using the correlation length calibrations 
from 31 CPTs. Figure 18 summarizes the simulation cal-
ibrations in terms of category 1 horizontal mean length. 
In this application, additional CPTs serve solely as con-
ditioning constraints. When the CPTs have separation 
distances greater than the horizontal mean length (61 m) 
the estimated subsurface conditions in the region be-
tween the soundings is highly variable. Adding CPTs in-
creases the conditioning locations, thereby reducing sim-
ulation variance. Maintaining the correlation structure 
from the 31 CPT cross-section but reducing the number 

Figure 13. A single simulation realization for the 31 CPT cross-section. Dashed black lines represent available CPT 
data. 

Figure 14. The average of 10 simulation realizations described using a heat map. The colorscale represents the 
individual categories where black corresponds to category 1 (expected liquefaction) and cream corresponds to category 
2 (expected nonliquefaction). Varying shades of gray indicate preference towards either category. Dashed white lines 
represent available CPT data. 



of conditioning locations used in simulation shows the 
value of conditioning locations when the correlation 
structure is known.   

The summary of calibration and simulation results 
from varying CPTs used in developing conditional simu-
lations are shown in Figure 19, which reports the number 
of CPTs, individually calibrated sill, mean lengths, ani-
sotropy, sampling spacings, and simulation error for each 
simulation. The sill is a relatively stable value since it is 
based on the vertical CPT information. Additional CPTs 
further refine the sill estimate from an initial value of 
56% to a final value of 49%. The calibrated correlation 
lengths decrease with increased number of CPTs for both 
vertical and horizontal directions. The vertical calibration 
decreases from an initial estimate of 1.8 m to a final value 
of 1.05 m while the horizontal calibration decreases from 
an initial estimate of 436 m to a final value of 61 m. The 
mean length anisotropy is reported as Lx/Lz and the initial 
structural anisotropy of 243 at an average spacing of 244 
m decreases to a final value of 58 at an average spacing 
of 16.2 m. In terms of S/L, the 3 CPT cross-section results 
in a horizontal S/L value of 0.56 while the final 31 CPT 
cross-section has a S/L value of 0.27 when using correla-
tion lengths calibrated to the respective number of CPTs. 
Assigning the correlation length for 31 CPTs calibration 
to each cross-section decreases the denominator in the 
S/L ratio while not affecting the spacing, resulting in es-
timates of S/L as large as 4.0.  The simulation error indi-
cates decreasing error with increasing number of CPTs or 
decreasing value of S/L when simulation error is refer-
enced to a single realization of the 31 CPT simulation.  

If simulations are developed solely on the available 
CPTs, increasing the number of CPTs used in geostatis-
tical simulations will affect both model calibration and 

conditional simulations. This provides insight to the sta-
bility of geostatistical simulations using incremental site 
investigation to consider the evolution of model calibra-
tion and conditional simulations with increasing site in-
vestigation information.  

An important observation is that the ability to rigor-
ously evaluate subsurface structure requires the ability to 
quantify correlation length and simulation uncertainty. 
Correlation uncertainty using the S/L framework sug-
gests that values less than 0.3 are well constrained and 
values above 0.5 are either minimally constrained or un-
constrained. Quantifying simulation uncertainty is more 
challenging because it requires establishing an objective 
metric with which to compare simulations. It is impossi-
ble to establish a rigorous simulation of the subsurface 
conditions for unconstrained sites with larger S/L values, 
since there is no ground truth to compare against. Uncon-
strained simulations can occur with both small and large 
numbers of CPTs performed or with large or small spac-
ings between nearby CPTs, since subsurface features can 
have both large or small correlation lengths. Normalizing 
spacing with correlation length provides an indicator for 
when to use stratigraphic simulations and when to per-
form alternate analyses using equivalent uniform anal-
yses (e.g., Boulanger and Montgomery 2016).   

6. Incorporating Geostatistics into 
Integrated Site Characterization 
Framework 

The incorporation of geostatistics into an integrated 
site characterization framework is conceptualized in the 
diagram shown in Figure 20. In this approach, a geologic 

Figure 15.  Comparison of 0.5, 1.0 and 2.0 times the calibrated mean length of 60 m for the 31 CPTs cross-section. 
Dashed white lines represent available CPT data. 
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model hypothesis of the subsurface is developed along 
with the relevent performance mechanisms. This infor-
mation can be used to design an initial site investigation 
plan, followed by performing a portion (first phase) of 
the site investigation. Subsurface information can be 
gathered from the site investigation and statistically eval-
uated to determine representative properties, cumulative 
distributions, etc. Following the statistical evaluation of 
subsurface information, the subsurface may be analyzed 
to estimate correlation lengths of the subsurface spatial 
structure. The outcomes of this can be used to assess, ver-
ify, and refine the initial geologic modeling hypotheses. 
Depending on what stage the site characterizaton process 
is in, this information can be used to update and refine 
the investigation plan for the next phase or work.  

The iterative loop can occur at different layers of com-
plexity and across different time scales. One approach is 
to perform simplified versions of this analysis as each 
piece of information is gathered during site investigation, 
in near real-time. The information obtained is analyzed 
and added to a working database to assess subsurface 
properties and spatial structure. Each new sounding pro-
vides additional information that can confirm existing 
hypotheses or change the current understanding of sub-
surface conditions. Another approach is to perform site 
investigation in incremental campaigns, where units of 
subsurface information are gathered, the geostatistical 

model is updated, the main sources of uncertainty identi-
fied, the next phase of the site characterization program 
is planned, and so on. 

7. Conclusions 

This paper has examined an idealized 3D site and a 2D 
cross-section of an industry project using a transition 
probability geostatistics method to provide more firm 
guidance in how site investigation programs can be per-
formed to obtain information useful for evaluating sub-
surface variability in addition to identifying soil types 
and properties. This has led to the following observa-
tions:  
• The category sill value (absolute proportion of ma-

terial types across the site) tends to stabilize with rel-
atively few CPT soundings due to the high sampling 
frequency in the vertical direction in CPT soundings. 
Once the category sill is defined, the focus can shift 
toward defining the correlation structure (i.e. mean 
lengths in the horizontal directions). 

• The mean length is typically overpredicted when the 
CPT spacing is large, a condition common for many 
site investigations when the number of soundings 
performed is relatively small (resulting in large spac-
ing) and the mean lengths are also relatively small.  

Figure 16. Subset of transition probability calibrations for the autocorrelation for zones of expected liquefaction in the 
horizontal (cross-channel) direction. Calibrations from left (a) to right (f) represent  increasing subsurface knowledge 
through increased number of CPT soundings and resulting lag distance pairs. 



  

Figure 17. Average of 10 realizations for simulations calibrated and conditionally simulated with data from 3, 5, 9, 16, 
and 31 CPTs with color shades representing the average category value at each simulation node. Dashed white lines 
represent available CPT data. 

Figure 18. Average of 10 realizations for simulations calibrated using 31 CPTs with correlation lengths of 1.05 and 
61.0 m in the vertical and horizontal directions, respectively. The 31 CPT correpation model is conditionally simulated 
with data from 3, 5, 9, 16, and 31 CPTs, with color shades representing the average category value at each simulation 
node. Dashed white lines represent available CPT data. 



 

• An equally spaced grid and a nested layout for CPT 
soundings each have advantages and disadvantages.  
The grid layout is effective at distributing condition-
ing locations for simulation across the entire site but 
less effective at estimating the correlation structure.  
In contrast, the nested layout is more effective at es-
timating correlation structure when fewer CPTs are 
used, but is less effective at distributing conditioning 
locations for simulation.  In practice, a combined ap-
proached may be most appropriate, where grid spac-
ing provides sufficient site coverage while the nested 
layout improves mean length calibrations.  

• The transition probability categorical approach al-
lows category bins to be defined in terms of direct 

measurement values, soil types, or performance met-
rics.  The simulated 3D example demonstrated the 
effectiveness of site investigation at capturing spatial 
correlation structure and conditional simulations of 
subsurface conditions. The latter 2D industry exam-
ple demonstrated the effectiveness of defining the 
category bins based on a performance threshold and 
the demonstrated the evolution of geostatistical cali-
bration parameters and resulting simulations using 
additional site investigation information.  

• The robustness of spatial correlation calibrations us-
ing a transition probability geostatistical approach 
depends on the spacing to mean length ratio (S/L). A 
value of S/L that is less than 0.3 will likely produce 

Figure 19. Summary of sensitivity to multiple correlation calibrations and conditional simulations for the 2-D cross-
section. Simulation error is compared to a single realization of the 31 CPTs cross-section. 



a (reasonably) well constrained correlation model 
calibration while a value that is 0.5 or greater will 
likely produce an unconstrained correlation calibra-
tion. It is important to note that estimate of mean 
length (L) generally decreases as the sounding spac-
ing decreases; therefore, in practical application it 
may be prudent to examine this ratio with respect to 
both the calibrated mean length and a range of pos-
sible L values defined based on the calibrated mean 
length and supplemental soft information (e.g. dep-
ositional processes, anticipated length scales of pos-
sible features, etc.) 

• Implementation of the approach presented herein 
will likely constitute an iterative process, as depicted 
in Figure 20. This approach is begins with develop-
ment of a geologic model, which is then iteratively 
refined during the site investigation program or be-
tween phases of the site investigation program.  In 
all likelihood the desired amount of information will 
not be collected due to time and financial project 
constraints, and it will be necessary to employ judge-
ment when deciding when a sufficient amount of 
data has been obtained.  The process as presented is 
intended to bring a systematic structure to integrat-
ing soft and hard information as it is collected, and 
to determine the potential value of pursuing addi-
tional data. 
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